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Abstract—The viscous dissipation heating of a finite length cylinder exposed to a steady uniform velocity
non-Newtonian fluid has been analyzed numerically. The solution determines the elliptic, velocity and
temperature fields of a high viscosity non-Newtonian Carreau model fluid about an axisymmetric cylinder.
With polymer processing in mind, Part I of this study [E. R. G. Eckert and J. N. Shadid, Int. J. Heat Mass
Transfer 32, 321-334 (1989)] considered the effect of the Reynolds number, Prandt] number, probe radius
to length ratio and the ratio of cylinder conductivity to fluid thermal conductivity. This paper extends
these results by considering the effect of a temperature-dependent non-Newtonian shear thinning viscosity
modeled by a temperature shifted Carreau fluid. Computations were performed for different values of the
power law exponent, the Weisenberg number, and the Nahme number. In this study calculations are
presented for an adiabatic probe with a radius to length ratio of 2.5 x 10~ 2, with the Reynolds and Prandtl
numbers taken to be fixed at 10~ and 10® respectively. The power law exponent is varied from 1.0
(Newtonian) to 0.2, the Weisenberg number varies from 0 (Newtonian) to 10*, and the Nahme number
between 0 and 10*. The results determine the increase in the cylinder wall and tip temperature due to
viscous frictional heating. Strong elliptic effects on the velocity extend over 100 radius lengths upstream
from the cylinder. As expected the shear thinning behavior of the non-Newtonian viscosity is found to
decrease the magnitude of the viscous dissipation heating of the probe surface. In contrast, the effect of
the temperature dependence of viscosity described by the Nahme number is found to have a relatively
small influence on the cylinder tip temperature.
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INTRODUCTION

IN THE flow of polymeric fluids, evaluation of the
local temperature field is often of primary interest
since a number of physical properties can vary sub-
stantially with temperature. In addition, relaxation
phenomena in polymers are strongly temperature
dependent, and the amount and location of residual
stress or strain in the product will depend on the local
temperature history of the polymer [1]. For this reason
the temperature field can have a significant effect on
the flow field as well as on the process itself.

The effort to measure local temperatures in a flow-
ing polymer encounters the difficulty that any object
exposed to a viscous flow is heated by internal friction
in a process which converts mechanical energy in the
fluid into internal energy and thus raises the probe
temperature. This process is known as viscous heat-
ing. The resulting temperature increase has to be
minimized or has to be determined by calibration if
one wants to obtain from the recorded probe tem-

perature the temperature which the fluid would have
when the probe is absent.

The present paper reports the results of an analysis
of viscous heating of a cylinder with finite length
oriented with its axis parallel to the velocity of the
oncoming non-Newtonian fluid flow. It is thought
that the cylinder approximates the shape of a tem-
perature probe inserted into the fluid. The velocity
and temperature fields are obtained by the analysis,
in addition to the surface temperature of the cylinder.
Knowledge of these fields is a prerequisite to an under-
standing of the relation between the temperature
history of a polymer melt and its effect on the macro-
scopic physical properties of the polymer material.
Part I of this study [2] considered the effect of the
Reynolds number, Prandtl number, probe radius to
length ratio and the ratio of cylinder conductivity to
fluid thermal conductivity. The results indicated a
substantial increase in the cylinder wall and tip tem-
perature due to viscous frictional heating. Strong ellip-
tic effects on velocity were found to extend over 100
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ar temperature shift factor for viscosity,
equation (13)

ok specific heat

D* = J(VV*+VV*T) deformation rate
tensor

E*  activation energy parameter in Arrhenius
model, equation (14)

k* thermal conductivity

L*  cylinder length

p* pressure

P = P*R*m*U¥ dimensionless pressure

R*  cylinder radius

R*  gas constant in Arrhenius model,
equation (14)

r¥ coordinate

r = r*/R* dimensionless coordinate

T* temperature

T% upstream temperature

U¥  upstream velocity

u* velocity component

u=u*/U¥ dimensionless velocity
component

V* velocity vector

v* velocity component

v=0v%U% dimensionless velocity
component

x* coordinate measured from cylinder tip

x¥ coordinate measured from cylinder
midplane

x = x*/R* dimensionless coordinate.

NOMENCLATURE

Greek symbols
¥ magnitude of deformation rate tensor
D*, equation (13)
n* viscosity
0 angular coordinate
O = (T*-TH/(n*Us/p*cFR*)
nondimensional temperature

o relaxation time parameter for Carreau
model, equation (13)
p* density

®*  dissipation function (see
equation (6))
VV*  velocity gradient tensor.
Dimensionless quantities
Na = (p¥(E*/R*T*¥ YUt /k* Nahme
number
Pr =n*c¥/k¥ Prandtl number
Re = 2p*U¥R*/n* Reynolds number
Wb = AXU%/R* Weisenberg number.

Superscripts
* dimensional quantity
T transpose.
Subscripts
0 upstream
f fluid
s sold
p cylinder tip.

radius lengths upstream from the cylinder. The vel-
ocity field results also indicated a nearly ‘creeping
flow” type velocity distribution about the cylinder
body. In contrast, the temperature field was found to
be confined to a very narrow region of high de-
formation rates around the cylinder surface. This
study extends these results by considering the effect
of a shear thinning, temperature-dependent non-
Newtonian viscosity modeled by a temperature shifted
Carreau fluid.

This paper, to our knowledge, presents the first
study of this kind for an external flow around an
object, whereas internal flow situations for pipes,
ducts and extruders have been reported in the litera-
ture [1, 3].

PROBLEM FORMULATION

Conservation equations
The following equations describe the steady, lami-
nar axisymmetric flow of a Carreau model non-New-

tonian fluid past a cylinder arranged with its axis
parallel to the main flow direction (Fig. 1). In the
equations, the pressure work term in the energy equa-
tion and the gravity term in the momentum equation
have been neglected. The equations have been made
dimensionless by the following change of variables:

(x,r,u,v, P,O,n) =

x* r* u* v* P*R*
KR UE U3 U ORI R

M

T*—T} 11*)

The symbols are defined in the Nomenclature and are
also indicated in Fig. 1. The resulting dimensionless
equations are :

Continuity equation

1 o(rv)  Ou
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Equations of motion
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with the following boundary conditions for the com-

putational domain ABCDEF :

+ +1Re Pro® (5)

on AB.CD:
g e
P, v=0, Ti=p 0
or or
on AF,EF:
u=1, v=0, =0 ®)
on DE:
du v 00
Feil Sl ®
on BG.HC:

=0 (10)

The boundary conditions on line segments AB and
CD reflect the axisymmetric nature of the steady flow
past the cylinder. On the segments AF and EF the
flow conditions are taken to be free stream values
since these boundaries are chosen to be far from the
cylinder body. Outflow conditions are assumed to
exist on the segment DE, which is located far down-
stream from the cylinder. At the solid-—fluid interface
made up of segments BG, GH and HC the no-slip
condition holds along with the continuity of the inter-
face temperature. It is also postulated that no tem-
perature equalization occurs within the cylinder (the
heat conductivity of the cylinder k¥ is zero). This
assumption has been shown to be physically reason-
able in the analysis of Part I. As in Part I an average
probe tip temperature, O is defined as below:

i
8, = 2f 05, rdr. (12)
0

Constitutive equation

The constitutive equation for the Carreau model is
a specific example of a generalized Newtonian fiuid
model in which the viscosity, n*, is allowed to vary
with the magnitude y* of the deformation rate tensor
D*. This parameter is also commonly termed the
‘shear rate’ or ‘deformation rate’. The most commonly
used generalized Newtonian fluid model is the power
law model [4, 5]. However, this simple model is not
directly applicable to this type of external flow, since
far from the cylinder body uniform free stream vel-
ocity conditions, and consequently zero shear rate
conditions, prevail. In this case the power law model
predicts a physically unrealistic infinite viscosity. For
this reason, the temperature shifted Carreau or modi-
fied power law model [1], with its smooth transition
to a constant viscosity at the limit of zero shear rate,
is used :
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The two material parameters, 2% and m, in the Carrcau
model describe the shear rate dependence of the vis-
cosity. The power law index, m, controls the slope of
the n* oc 7™ Y power law region of the viscosity
model, whereas the characteristic relaxation time, 4],
describes the transition to a constant viscosity in the
limit of zero shear rate. In this context, A} is used to
describe the shear thinning behavior of the fluid; this
parameter does not describe any type of viscoelastic
behavior of the fluid. The above Carreau model
involves the minimum number of material parameters
necessary to describe the purely viscous effects which
are expected to be most important in such flow situ-
ations. The study of viscoelastic effects would require
a considerably more complex constitutive model and
involve more material parameters; it is therefore left
to later studies to detail the role of elastic effects on
the viscous dissipation heating produced in such
flows.

The viscosity of non-Newtonian fluids is also
known to depend on temperature and pressure; the
small amount of available data indicate that the tem-
perature dependence is much stronger than the pres-
sure dependence [1]. For this reason, the pressurc
dependence will be neglected in the following analysis.
The temperature dependence of polymeric liquids can
be described by the method of reduced variables [6}
with the use of a material dependent shift factor a;.
Commonly this temperature dependence is modeled
by an Arrhenius function :

Ex{1 1
=R T\ T T

This relationship is observed to held for low molec-
ular weight fluids and molten polymers 100 K or more
above their glass transition temperatures [1]. Using
the definition (1) the nondimensional form of the
temperature shifted Carreau model becomes :

(14)

ay
I e Sy 15
" [1 +(Wb aT,};);](if—m},- ( )

with

In this formulation the parameter Wb can be inter-
preted as a type of Weisenberg number describing the
ratio of characteristic relaxation time of the fluid to a
characteristic time, R*/U%, for the flow process. The
influence of the shift factor, ay, the Weisenberg
number, Wh, and the power law index, m, is shown

J. N. Snapiy and E. R. G. ECKERT

Shear limiting Power law limiting

viscosity N viscosity

P o
N
o L N
ar L o D e 2 R
S af N

yimi

* Wyt

i

|
{
i
i
i
i
i
1
i
'
i
{
1
1

!

n=7"n,
e

log [ Why }

FiG. 2. Schematic diagram of temperature shifted Carreau
model.

in Fig. 2. The nondimensional form of (14) is given
by

(16)

Na Re T}

with

The nondimensional parameter, Na, is the Nahme
number {1, 7]. For relatively small temperature differ-
ences, T§/T* =~ 1, equation (16) can be simplified to

an

which is assumed to describe the temperature depen-
dence of viscosity in the analysis that follows. Winters
(personal communication, 1988) indicates that equa-
tions (15) and (17) provide a good description of the
temperature and shear rate dependence of viscosity
for polymer melts, while at the same time eliminating
the additional process-dependent parameter T7%/T*.
Also, it should be noted that since T* > T, equation
(17) provides an upper limit on the viscosity decreas-
ing effect of temperature.

The nondimensional equations and boundary con-
ditions above indicate that the dimensionless velocity,
pressure and temperature fields are functions of the
power law index, m, Weisenberg number, Wb, and
the Nahme number, Na, for fixed Re, Pr, R*/L*
and k*/k¥. From the WNewtonian analysis of
Part I the following values, Re = 107°, Pr = 10%,
R*/L* = 2.5x 107 and k*/k¥ = 0, have been selected
as representative of such polymer flows.

COMPUTATIONAL DETAILS

The governing equations were discretized by using
a control volume based finite difference scheme along
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with the SIMPLER procedure for solution of the
velocity and pressure fields [8]. The resulting system
of nonlinear algebraic equations was linearized by
a Picard iteration (or successive substitution)
procedure. Thus, for example, the inherent non-
linearity of the temperature and shear rate dependence
of viscosity is linearized by using values from the
previous iteration to compute the viscosity at each
grid point. At each iteration a direct inversion tech-
nique was used to solve for the flow variables (u, v,
P), along with a line-by-line technique [8] for the
temperature field ©. A penalty method formulation is
used to produce nonzero diagonal elements associated
with the continuity equation in the coefficient matrix.
This technique, discussed in detail in ref. [9], allows
efficient inversion of the coefficient matrix using sparse
matrix routines.

The computational domain was discretized by a
150 x 50 nonuniform grid in the x and r directions
respectively. The grid was finer in the x direction at
the probe tip; in the r direction the grid was finest
near the probe wall GH. In order to achieve grid and
domain independent results a highly nonuniform grid
was found to be necessary. The details of the grid
independence study can be found in Part I. The
computations were performed on the Minnesota
Supercomputer Institute’s Cray-2 machines. Typical
execution times for the numerical solutions were of
the order of 600 seconds. The core memory required
was about 5 x 10° Cray-2 words (64 bit words).

The influence of the nondimensional parameters on

the solution of the governing equations was deter-.

mined as follows. For the case of a Carreau model
fluid with no temperature dependence on viscosity
(Na = 0) the effect of the power law index, m, on the
velocity and temperature fields was studied by fixing
Wb = 10°. The value of Wb was varied between 0 and
10* for Na=0 and m = 0.5 to study its effect on
the velocity and temperature fields. The effect of a
temperature dependence on viscosity was studied
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by fixing m = 0.5 and Wb = 10° while varying the
Nahme number from 0 to 10*.

RESULTS AND DISCUSSION

Velocity field

The effect of the shear rate dependence of the vis-
cosity on the hydrodynamic boundary layers around
the cylinder body is presented in Fig. 3 for the case
Wb = 10°. The vertical and the horizontal scales in
this plot are nonlinear and vary as ,/r and
\/ (]x—x.|) respectively. The term boundary layer in
this context is used to describe the region of the flow
about the cylinder body which is affected by viscous
forces. In this plot the axisymmetric nature of the flow
has been used in the present results for the entire plane
0 = constant. It is clearly evident from Fig. 3 that a
decrease in the power law index, m, causes a cor-
responding decrease in the thickness of the 99%
boundary layer surface. Thus the non-Newtonian
shear thinning behavior limits the domain influenced
by the presence of the cylinder body in the uniform
flow. Since m typically varies from 0.6 to 0.2 for
polymer melts, it is evident that the non-Newtonian
behavior has a pronounced effect on the location of
the 99% boundary layer. For example, in the case
of m = 1.0 the Newtonian boundary surface extends
approximately six times further from the cylinder sur-
face than the corresponding m = 0.4 surface. In Fig. 3,
a ‘necking’ or thinning of the boundary layer surfaces
near the corners of the cylinder is apparent for small
values of m. This necking in the vicinity of the corners
is most likely due to the existence of high shear rate
regions near the corner (see Figs. 5 and 6, Part )
and the increased shear thinning of viscosity as m
decreases. With this local decrease in viscosity due to
shear thinning, the fluid accelerates near the corner
and thereby decreases the thickness of the boundary
layer.

The upstream elliptic effects due to the presence of

r*IR"

100.0
50.0
10.0

-1.0

-10.0

-50.0

-100.0

-300.0

Fi16. 3. Location of axisymmetric 99% boundary layer surface (Na = 0, Wb = 10°,
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FiG. 4. Velocity profiles upstream of cylinder tip (Na =0,
Wh = 10%, x*/R* = —1.32).

the cylinder body are evident in Figs. 4 and 5. In Figs.
4 and 5 nondimensional velocity profiles are plotted
at a fixed point upstream of the cylinder tip. From
these figures it is apparent that as the magnitude of the
shear thinning effects increases, the upstream velocity
profile approaches more closely a uniform flow dis-
tribution. In Fig. 5 it is evident that the influence of
the Weisenberg number decreases as Wb increases to
about 10°. This trend is to be expected since as
Wb increases (Fig. 2) the ‘power law’ region of the
viscosity relationship increases in magnitude to lower
shear rates. Thus in almost the entire hydrodynamic
boundary layer near the cylinder body the fluid
behaves as a power law type fluid.

The increase in the magnitude of the velocity gradi-
ents, and hence the deformation rate y, with increasing
non-Newtonian behavior is most clearly seen in a plot
of deformation rate just upstream of the cylinder tip.

80.0 70.0
T

50,0
¥

Wh = O {(Newtonian)

rriR®
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20,0
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0.9
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0.0

90 01 02 03 04 05 06 07 08 09 10
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F1G. 5. Velocity profiles upstream of cylinder tip (Na =0,
m= 0.5, x*/R* = —1.32).
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FiG. 6. Deformation rate profiles upstream of cylinder tip
(Na =0, Wb = 10°, x*/R* = —0.1).

Figure 6 presents the effect of decreasing power law
index, m, for a fixed Wb = 10* and x*/R* = —0.10.
Clearly the local decrease in the viscosity in the high
velocity gradient regions tends to further increase the
magnitude of the deformation rate y*. Asin Part I, the
maximum deformation rate is found near the corner
BGH (Fig. 1) and consequently r*/R* = 1.0. The
effect of decreasing m is to confine the large defor-
mation rates to a smaller interval about #*/R* = 1.0
as well as increasing its maximum value. A similar
tendency is found with increasing Weisenberg number
and it is therefore not presented.

The effect of increased shear thinning behavior on
the deformation rate profiles in the hydrodynamic
boundary layer along the cylinder surface is presented
in Figs. 7 and 8. As m decreases the boundary layer
velocity profile fills out, with a corresponding decrease
in the momentum deficit of the velocity profile. At the

o0 31 22 83 04 05 86 07 o8 0.9 0

w1y,

F16. 7. Velocity profiles in hydrodynamic boundary layer on
cylinder surface (Na = 0, Wb = 10°, x*/R* = 0.11).
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F1G. 8. Deformation rate profiles in hydrodynamic boundary
layer on cylinder surface (Na = 0, Wb = 10°, x*/R* = 0.11).

same time the deformation rate at the surface increases
as the velocity gradient normal to the cylinder surface
increases.

Temperature field

The effect of increasing non-Newtonian behavior of
the Carreau model fluid on the velocity field has been
summarized in the previous section. In general, as m
decreases (or Wb increases) the velocity field profile
fills out and the velocity gradients near the cylinder
surface increase in magnitude. This increase in vel-
ocity gradient has the effect of increasing the mag-
nitude of the viscous dissipation term (equation (6)).
Counteracting this increase in velocity gradient is the
corresponding decrease in the magnitiude of the vis-
cosity ratio coefficient, #, of the viscous dissipation
term in equation (5). In the figures that follow it is
seen that the overall effect of the increasing non-New-
tonian behavior is to lower the magnitude of energy
dissipated by viscous friction in the particular flow.

Figure 9 presents temperature profiles in the ther-
mal boundary layer downstream of the cylinder tip
for various values of m. In this figure, the decrease in
the thermal boundary layer thickness and the adia-
batic wall temperature are evident as the non-New-
tonian behavior of the fluid increases. For example, a
decrease in m from 1.0 to 0.4 produces a decrease of
about 25 times in the local dimensionless adiabatic
wall temperature. Clearly, the shear thinning effect on
viscosity is an important factor in characterizing the
viscous dissipation heating of such flows. The effect of
increasing non-Newtonian behavior on the adiabatic
wall temperature along the cylinder surface is shown
in Figs. 10 and 11. From these figures, as discussed
in Part 1, the effect of a nonadiabatic cylinder body
on the cylinder tip temperature can be estimated.
However, as demonstrated in Part 1, it should be
possible to construct a temperature probe which
behaves essentially as an adiabatic cylinder (see Fig.
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F1G. 9. Temperature profiles in thermal boundary layer on
cylinder surface (Na = 0, Wb = 10°, x*/R* = 0.11).

13, Part I). For this reason, the effect of the increasing
non-Newtonian behavior on the cylinder tip has been
summarized in Figs. 12 and 13 for an adiabatic body.

Figure 12 presents the nondimensional tip tem-
perature for various values of 0.2 <m < 1.0 and
1071 < Wb < 10°. A significant decrease in tip tem-
perature is apparent in Fig. 12 for values in the range
of 0.2 <m<0.6 and 10' < Wb < 10* which would
be representative of typical polymer melts. Also evi-
dent in Fig. 12 is a ‘power law’ like region for tip
temperature when 10' < Wb < 10°. This region
clearly corresponds to the power law asymptotic
region illustrated in Fig. 2. To further demonstrate
the existence of this region a power law type cor-
relation has been fitted to the numerical data in the
region, 0.2 < m < 0.8 and 10" £ Wb < 10°. The cor-
relation given in equation (18) below is plotted with
the numerical data in Fig. 13:

125.0

0:0 a1 0.2 0.3 0.4 Q.5 0.6 0.7 0.8 08 1.0
X'
Fi1G. 10. Effect of power law index on local wall temperature
of the cylinder (Na = 0, Wb = 10°, x*/R* = 0.11).
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x*i*

Fig. 11. Effect of Weisenberg number on local wall tem-
perature of the cylinder (Na = 0, m = 0.5).

O, = 1111 —m)*3? pp-oosti-m, (18)
From Fig. 13 it is evident that the correlation is most
inaccurate for m = 0.8 at low Weisenberg numbers
and for m = 0.2 at higher Wb. The similarity of the
slope dependence on the power law index, m, in the
case of nondimensional viscosity » (equation (15) and
Fig. 2) and the nondimensional adiabatic tip tem-
perature, ©®, (equation (18) and Fig. 13} is readily
apparent.

To study the temperature dependence of viscosity

Newtonian fiuid

100 4

1074 -y "
167t 109 10

Fig. 12. Effect of Carreau mode! parameters on non-
dimensional tip temperature (Na = 0). .
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the Nahme number, Na, was varied from 0 to 10* for
fixed values of Wb and m. This range is shown to be
representative of the order of magnitude of the Nahme
number variation by the following estimate suggested
by Winter (personal communication, 1990).

Since

(220070 py

kTR
Ty

(19)

using representative quantities:
Pr=10°% *x2x100Jkg 'K,
E* ~ 15 kcal kmol™!, R~ 2kcal kmot"'K '
and assuming

Us=01ms™', T§=400K,

this implies
Na =~ 3.75x 10°.

This establishes a reasonable range of values to study
the Nahme number variation in typical polymer pro-
cessing applications.

In this Nahme number range the effect of increasing
temperature dependence of viscosity on the defor-
mation rate profiles on the cylinder surface is pre-
sented in Fig. 14. These profiles are computed for
Xx*/R* = 0.11, which is immediately downstream of
the cylinder tip. Itis evident that an increase in Nahme
number, Na, tends to increase the wall deformation
rate j*. This is similar to the shear thinning effect (Fig.
8) demonstrated above, with the decrease in the local
viscosity at the wall causing a corresponding increase
in the velocity gradient normal to the cylinder surface.
However, in this case the effect of the decrease in the
local viscosity and the increase in deformation rate
produce an increase in the local viscous dissipation
rate. This is the opposite of the shear thinning effect
which was discussed above, This increase in dis-
sipation rate results in a higher local surface tem-
perature as the Nahme number increases (Fig. 15).



Heating of a cylinder by a high viscosity fluid—II

15

14

13

iR

Newtonian

12

0.0 1.0 2.0 3.0 4.0 5.0

FiG. 14. Nahme number effect on deformation rate profiles
in the hydrodynamic boundary layer (m = 0.4, Wb = 10%,
x*/R* = 0.11).

Apparently, the net effect of the decrease in n and
the increase in ¥ (or @) tend to increase the viscous
dissipation generation term in equation (5). The mag-
nitude of this increase as a function of distance along
the cylinder surface is shown in Fig. 16 for various
values of Na. Clearly, the net effect of the temperature
dependence of # is to increase the viscous heating
of the cylinder surface. In contrast the temperature-
dependent viscosity has very little effect on the non-
dimensional tip temperature for Na < 10* as pre-
sented in Table 1. From Table 1 it is apparent that
for Na < 10* there is less than a 1% change in the
nondimensional tip temperature. Evidently, the
limited upstream elliptic influence of temperature has
little effect on the temperature dependence of viscosity
and hence the deformation rates local to the cylinder

up.
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Fic. 15. Nahme number effect on temperature profiles in
the hydrodynamic boundary layer (m = 0.4, Wb =104,
X*/R* = 13.8).
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FiG. 16. Nahme number effect on the local wall temperature
of the cylinder (m = 0.5, Wb = 10°).

CONCLUDING REMARKS

In this study a numerical analysis has been pre-
sented for the steady, low Reynolds number flow of
a high Prandt! number non-Newtonian fluid past a
cylinder of finite length with its axis parallel to the
main flow direction. It is thought that the cylinder
approximates the shape of a temperature probe
inserted into the fluid. The fluid is postulated to be a
Carreau model fluid with a temperature-dependent
viscosity. Part I of this study considered the limiting
case of a Newtonian fluid with physical properties
which are independent of temperature. In Part I the
effects of Reynolds number, Prandtl number, cylinder
radius to length ratio and cylinder conductivity to
fluid thermal conductivity were studied. In general the
results of that analysis indicated a viscosity dominated
flow field with hydrodynamic boundary layers extend-
ing hundreds of cylinder radii in all directions, as
well as very thin thermal boundary layers confined to
narrow regions of high deformation rates near the
cylinder surface. The calculations presented verified
that viscous heating effects are important in such fluid
flows when a temperature probe is used to measure

Table 1. Dependence of the
temperature parameter 98,,

on the Nahme number
(R/L=0.025, Re=10"?
and Pr=10%, m=0.5,
Wb = 10%)

Na ®Sp

0.0 1.128

102 1.128

103 1.129

5x10° 1.132

104 1.137
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the temperature in a flowing polymer. Part 11 extends
these results by considering the effect of a shear
thinning, temperature-dependent non-Newtonian vis-
cosity modeled by a temperature shifted Carreau fluid.
This analysis presented a parametric study of the effect
of shear thinning behavior, described by the power
law index m and the Weisenberg number Wb, and the
temperature dependence of viscosity described by the
Nahme number Na. The results for a temperature-
independent viscosity indicate that the magnitude of
the viscous heating effect decreases substantially with
increasing non-Newtonian behavior (decreasing m
and/or increasing Wh). These results verified that the
limiting Newtonian case studied in Part | provides
an upper bound for the magnitude of the viscous
dissipation heating encountered in such flows. In
addition, these results revealed the existence of a
power law type relationship between the non-
dimensional tip temperature and the Weisenberg
number and power law index. For this region a power
law correlation was presented which successfully
described the trend of the numerical data. The study
of temperature-dependent viscosity effects indicated
that in general the magnitude of the viscous dis-
sipation heating of the cylinder surface increased with
increasing Na. In addition, the results indicated a
relatively small effect on the nondimensional tip tem-
perature for the case of an adiabatic probe. Since a
properly designed temperature probe should be able
to approach the response of the adiabatic limit (Part
I) it is concluded that the temperature dependence
effect on the tip temperature is small for reasonable
values of Na.
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ECHAUFFEMENT VISQUEUX D’'UN CYLINDRE DE LONGUEUR FINIE PAR UN
LIQUIDE FORTEMENT VISQUEUX EN ECOULEMENT LONGITUDINAL
PERMANENT—II. FLUIDES NON NEWTONIENS DE CARREAU

Résumé—On étudie numériquement le chauffage par dissipation visqueuse d'un cylindre de longueur finie
exposé a I’écoulement permanent d’un fluide non newtonien. La solution concerne les champs de vitesse
et de température elliptiques d’un fluide non newtonien de Carreau fortement visqueux autour d’un cylindre
axisymétrique. Ayant en considération le traitement de polymére, la partie I de cette étude [E. R. G. Eckert
et I. N. Shadid, Int. J. Heat Mass Transfer 32, 321-334 (1989)] considérait I'effet des nombres de Reynolds
et de Prandtl, le rapport du rayon a la longueur, et le rapport des conductivités thermiques du cylindre et
du fluide. On étend ici les résultats en considérant I'effet d’une viscosité non newtonicnne dépendant dc la
température selon le modéle de Carreau. Des calculs sont conduits pour différentes valeurs de Uexposant
dans la loi puissance, des nombres de Weisenberg et de Nahme. Ces calculs sont présentés pour unc
éprouvette adiabatique ayant un rapport rayon sur longueur de 2,5 x 10 *et pour des nombres de Reynolds
et de Prandt! respectivement fixés a 10~ et 10°. L'exposant varie entre 1,0 (newtonien) et 0.2. le nombre
de Weisenberg entre 0 (newtonien) et 10%, ¢t le nombre de Nahme entre 0 et 10*. Les résultats concernent
I'accroissement des températures de la paroi et de I'extrémité di a I'échauffement visqueux. Des effets sont
sensibles pour la vitesse jusqu'a plus de 100 rayons en amont du cylindre. L'effet de la dépendance de la
viscosité vis-a-vis de la température décrite par le nombre de Nahme a une faible influence sur la température
de 'extrémité du cylindre.
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BEHEIZUNG EINES ZYLINDERS ENDLICHER LANGE DURCH VISKOSE DISSIPATION
BEI DER STATIONAREN LANGSANSTROMUNG DURCH EIN FLUID GROSSER
ZAHIGKEIT—II. NICHT-NEWTON’SCHE MODELLFLUIDE NACH CARREAU

Zusammenfassung—Die Beheizung eines Zylinders endlicher Léinge durch viskose Dissipation bei der
gleichmiBigen stationfiren Anstrdmung durch ein Nicht-Newton’'sches Fluid wird numerisch untersucht.
Als Losung ergeben sich die elliptischen Geschwindigkeits- und Temperaturfelder in einem Nicht-New-
ton’schen Modellfiuid hoher Viskositit nach Carreau in der Umgebung eines achsensymetrischen Zylinders.
Vor dem Hintergrund der Polymerverarbeitung befaBte sich Teil 1 dieser Untersuchung mit dem Einflu
der Reynolds-Zahl, der Prandtl-Zahl, des Verhéltnisses von Radius zu Lange sowie des Verhélinisses der
Wirmeleitfihigkeiten von Zylinder und Fluid. In der vorliegenden Arbeit erfolgt eine Erweiterung zur
Beriicksichtigung des Einflusses einer temperaturabhingigen Nicht-Newton’schen Viskositit, die unter
Schubspannung abnimmt und durch ein temperaturversetztes Fluid nach Carreau dargestellt wird. Die
Berechnungen wurden fiir unterschiedliche Werte des Exponenten im Potenzansatz, der Weisenberg-
Zah! und der Nahme-Zah! durchgefithrt. Die Berechnungen erfolgten fiir eine adiabate Probe mit einem
Radius/Lingen-Verhiltnis von 2,5 x 10~ 2, einer Reynolds-Zahl von 1077 und einer Prandtl-Zahl von 10%
Der Exponent wird zwischen 1,0 (Newton’sches Fluid) und 0,2 variiert, diec Weisenberg-Zahl zwischen 0
{(Newton'sches Fluid) und 10* und die Nahme-Zahl zwischen 0 and 10%. Die Ergebnisse zeigen den Anstieg
der Temperaturen an Zylinderwand und -stirnseite aufgrund der Reibungsheizung. Es ergeben sich stark
elliptische Einfliisse auf die Geschwindigkeit, die sich iiber eine Lénge von iiber 100 Radien stromaufwirts
des Zylinders erstrecken. Wie erwartet nimmt aufgrund der scherungsbedingt verringerten Viskositit die
Stirke der Beheizung der Probenoberfliche aufgrund der viskosen Dissipation ab. Im Gegensatz dazu hat
die Temperaturabhiingigkeit der Viskositdt (wie sie die Nahme-Zahl beschreibt) einen verhiltnismiBig
geringen Einflufl auf die Temperatur der Zylinderstirnfliche.

BSI3KOCTHBIN HATPEB LIWJIMH/IPA KOHEYHO! JUIMHBI TP CTALITHOHAPHOM
TIPOZIOJIBHOM OBTEKAHWH BbICOKOBS3ZKOHM XUJKOCTHIO—IL
HEHBIOTOHOBCKHUE XHUJIKOCTH, OITACLIBAEMbBIE MOJEJIBIO KAPPO

AsHoTauas—YHCNIEHAO aHANM3UPYETCH HATPEB 34 CYET BA3KOCTHOMH ANCCHIAIMH IMIHHAPZ KOHEYHOH
IUTHHBI, 06TEKAEMOTO CTAMOHAPHBIM MI0TOKOM HEHBIOTOHOBCKOH JKHAKOCTH € IIOCTOSHHOM CKOPOCTBIO.
OnpenensroTcs MMITHIECKOE TONE, a TAKKE NMOMS CKopocTelf i temnepatyp B mopenun Kappo ans
BBICOKOBS3KOI HEHLIOTOHOBCKOH KHIKOCTH, obTekatomiell ocecnMMerpHubil mwwmnap. B wactu I nac-
TOSINETO HCCHEOBAHHA PACCMATPHBANOCH Biusuue duces Pelinonpaca u Ipaunaras, a Takxe oTHOLeE-
Huit pagMyca 30HZA K €70 IUIMHE M TeIUIONPOBOMHOCTEH UWWIMHAPA ¥ XHAKOCTEH B NPHIOKEHHH X
obpabotke HosumepoB. B zammol wacTu nosjyueHHsie pesyiabrartel 06o0maloTcs ma cayvall yuera
BIHAHUA 3aBUCAINCH OT TEMIEPATYphl AHOMANLHOM CABUrOBOH BA3KOCTH, MOJACHAHPYEMOH XHIKOCTBIO
Kappo ¢ uaMensroweiics TeMnepaTypoil. PacueTs! NpoBOAKIHCH [UIS Pa3/IHYHBIX 3HAYCHHH MOKasaTens
CTENEHHOro 3aKOHa, 4 Takxe wuces BaiizenGepra u Hame. IpencrasneHsl pacyeTsl nns anmabaTadec-
KOTO 30HJa ¢ OTHOLICHHEM pafHyca K JJTHHe, paBHbIM 2,5 x 1072, 4 uncnamu PeitHonsaca W Ilpaunrns,
COCTAaBISIOWMME cooTeercraenno 1073 u 1078 MMokasaTens creneHHOro 3akoHa Bapaupyercs ot 0,1
{sbroTOHOBCKOrO) fto 0,2; wicno Baitzenbepra—ot O (astoToHOBCKOro) Ao 10* 1 uncno Hame—s natep-
pane 0—10% PesynnTaThi yKa3ssiBalOT Ha POCT TeMMAEPATYPhl CTCHKH M BEPIIMHK! HITHHAPA 34 CueT BA3-
KOCTHOro Harpesa. CHIBHOE 3JUIMNTHYECKOE BIMAHHE HA CTEKY IMJIMHIPAE PACHPOCTPAHACTCH Ha JJIHHY
CTa pPaguycOB BBEPX [0 TEYCHHIO OT uuiHHpa. Kak H OXMAANOCH, Y10 YMEHBIIECHHE CABHIOBOR anoMa-
JIbHOH BS3KOCTH NPHBOAMT K CHEXCHHIO BeIMYHHE! Harpesa IOBEPXHOCTH 30HIA 33 CYET BA3KOCTHOH
nuccunanwy. HanpoTus, TeMmepaTypHas 3aBUCHMOCTH BS3KOCTH, onuchipaeMoil yncioM Hawme, oxaiwr-
BA€T CPaBHATE/ILHO HeGOILIIOE BIHSAHME HA TEMIIEPATYPY BEPIUHHBI IIMHAPA.
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